Gauss' Law

- The amount of the electric field Electric Flux
- Simplifying field calculations Gauss' Law
- Applications of Gauss' Law
- Conductors in equilibrium

Electric Flux

Electric flux is proportional to the total number of electric field lines through a surface

$$\Phi_E = EA (N.m^2/C)$$

$$\Phi_E = \Phi_E' = EA' = EA\cos\theta$$

Concept Question

A cylindrical piece of insulating material is placed in an external electric field, as shown. The net electric flux passing through the surface of the cylinder is

- 1. positive.
- 2. negative.
- 3. zero.

General Flux Definition

$$\Delta \Phi_E = E_i \Delta A_i \cos \theta = \vec{\mathbf{E}}_i \cdot \Delta \vec{\mathbf{A}}_i$$

$$\Phi_E = \int_{surface} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$$

Flux Through a Cube

Gauss's Law

Start with a single charge and a spherical surface around it

Calculate the flux through the sphere

Generalize to any surface

$$\Phi_E = \oint \vec{\mathbf{E}} \cdot d\mathbf{A} = \oint E dA$$

$$\Phi_E = E \oint dA$$

$$\Phi_E = k_e \frac{q}{r^2} (4\pi r^2)$$

$$\Phi_E = \frac{q}{\mathcal{E}_0}$$

$$\Phi_E = \oint \vec{\mathbf{E}} \cdot d\mathbf{A} = \frac{q_{in}}{\mathcal{E}_0}$$

Some Important Notes About Gauss' Law

- A closed region that contains no charge has zero net flux through it.
- Even though the net flux is determined only by the charges inside the surface, the electric field at any given point on the surface is a result of all charges, inside and outside.
- Therefore, a zero flux through a closed surface does not imply a zero field at any point on the surface.

Application to Charge Distributions

Choosing a Gaussian Surface:

- The field over the surface is constant through symmetry.
- The field, E and the surface vector, dA are parallel simplifying the dot product to an algebraic product.
- ... or they are perpendicular, making the dot product zero.
- The field is zero over the surface.

Spherically Symmetric Charge Distribution

$$E = k_e \frac{Q}{r^2}$$

$$E = k_e \left(\frac{Q}{a^3}\right) r$$
$$r < a$$

Line of Charge – Cylindrical Symmetry

$$\Phi = \Phi_{side} + \Phi_{top} + \Phi_{bottom}$$

$$\Phi_{top} = \Phi_{bottom} = EA \cos 90^{\circ} = 0$$

$$\Phi = \Phi_{side} = EA_{side}\cos 0^{\circ} = E(2\pi rl)$$

$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$

Insulating Plane of Charge

$$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = q_{enc}$$

$$\varepsilon_0(EA + EA) = \sigma A$$

$$E = \frac{\sigma}{2\varepsilon_0}$$

Conductors in Equilibrium

- Put a conductor in an electric field.
- The free electrons inside the conductor will accelerate in the opposite direction of the field lines.
- As the negative and positive charges separate, an internal field opposing the external field will be established.
- The acceleration of charges will continue until the internal field cancels out the external field and the conductor will reach electrostatic equilibrium.
- The electric field is zero everywhere inside a conductor at electrostatic equilibrium.

Conductors and Gauss's Law

- Take a Gaussian surface inside a conductor that is arbitrarily close to the surface.
- Since the electric field inside the conductor (and hence on the Gaussian surface) is zero, there is no net charge inside the surface.
- Since the surface is arbitrary, and can be made infinitesimally close to the outer surface of the conductor, any net charge on a conductor will reside on the surface.

Conductors and Gauss's Law

- The flux through the top surface is EA, since E is perpendicular to A (electrostatic equilibrium).
- Therefore the flux is zero through the side wall outside the conductor.
- The field, and hence the flux, through the surfaces inside the conductor are also zero.

$$\Phi_E = \oint E dA = EA = \frac{q_{in}}{\varepsilon_0}$$

$$E = \frac{q_{in}}{A\varepsilon_0} = \frac{\sigma}{\varepsilon_0}$$

Conductors and Gauss' Law

- The electric field is zero everywhere inside a conductor at electrostatic equilibrium.
- Any net charge on a conductor will reside on the surface.
- The electric field just outside a conductor is perpendicular to the surface and is proportional to the charge density.
- The charge density is highest near parts of the conductor with the smallest radius of curvature.

A Sphere Inside a Spherical Shell

Insulating Sphere	Conducting Sphere
$E = k_e \frac{Q}{a^3} r$	E = 0
$E = k_e \frac{Q}{r^2}$	$E = k_e \frac{Q}{r^2}$
E = 0	E = 0
$E = -k_e \frac{Q}{r^2}$	$E = -k_e \frac{Q}{r^2}$
	Sphere $E = k_e \frac{Q}{a^3} r$ $E = k_e \frac{Q}{r^2}$ $E = 0$

Summary

- Flux through any closed surface is proportional to the net charge enclosed by the surface.
- Use symmetry to simplify calculations.
- All excess charge on a conductor will reside at the outer surface. The field inside the conductor is zero.

For Next Class

- Reading Assignment
 - Chapter 25 Electric Potential
- WebAssign: Assignment 2